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Noneq~librium space flows with an arbitrary number of relaxation processes in- 
herent to homogeneous and heterogeneous media are considered. Sufficient con- 
ditions for the existence of flow field regions in which conventional linear theory 
is inapplicable, are formulated. A method is proposed for the construction for 
these regions of a nonlinear theory of weakly perturbed flows. 

Applications of the conventional linear theory for investigating equilibrium 
and nonequilibrium flows is limited. This is partly due to incorrect formulation 
of such theory, and partly to the impossibility to define some of the flow regions 
by linear equations [l-3], Modification of the conventional linear theory of 
equilibrium and n~eq~~br~urn flows (see, e. g, [4]) made it possible to widen 
the range of its appli~bi~~ and improve its accuracy. Nonlinear equations 
were used in [5-81 for defining noneq~librium weakly perturbed flows with a 
single relaxation process. Weakly perturbed flows with an arbitrary number of 
nonequilibrium psocesscs are analyzed in terms of the linear theory in [g-13]. 

1. Let ‘us consider a nonstationary space flow of an inviscid and nonheat-conducting 
gas in which various nonequilibrium processes may take place. Let p be the density,.p 
the pressure. X, y, z a system of Cartesian coordinates, t the time. V the velocity 
vector with projections u, v, w and c the speed of sound (unless otherwise stated c is 
assumed to be the propagation rate of small perturbations, when all relaxation processes 
are frozen), The f~damental equations of conservation may be presented in the follow- 

where 1 = {L,, L,, L,), and vector L = {Lk} (k = 1, 2, . . ., 5) is determined 
by the nonequilibrium processes. It is assumed that L does not contain derivatives of 
p, p and V. 

We introduce new independent variables 

Ei = Ej (t, X7 Ys z, (j= 1, 2, 3, 4) 

with a nonzero Jacobian of ~ansf~ma~on, and use the notation 

(1.9) 

uj =A~I + AjV, Aj = {Ajz,Ajs, Ajd}, wja = IAjl' 
The system of Eqs.(l. 1) in new variables assumes the form 
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The system of Eqs. (1.3) is generally quasi-linear. The matrix of coefficients at de- 
rivatives contains five rows and 20 colnrnns. It can be divided into four square matrices 
5 x 5, whose elements are the same as the coefficients at derivatives of u, u, w, p and 
p with respecr to & 

~-4, ~4, pAi, 0 Ui 
PUS 0 0 Ai, 0 

0 PUi 0 
10 

Ai 0 
0 

P& 4, 0 
0 0 0 ui --C”Ui 

Let us calculate the determinant of this matrix 

Af = p3UI (Uz - C% 2, 

(1.4) 

The system of Eqs. (1,3) can be solved for derivatives with respect to Et, if Ai =+ 0. 
When Ai = 0 , the hypersurfaces 5i = con& represent characteristics, and the rows 
of matrix (i,4) are linearly dependent [14]. Let us determine the coefficients of this 
linear dependence, i.e. find the eigenvector of the transposed matrix, which corresponds 
to the zero eigenvalue. It can be defined by an expression of the form 

S zzz {cslJi; - &sAis; - SAta; - ?Aia; vi> (1.5) 

Multiplying Eqs. (I. 3) by related projections of vector S and adding, we obtain 

Equation (1.6) contains only one derivative with respect & viz that of p, and, if & 
is a characteristic variable, there are no such derivatives. (For i = i the coefficients 
at i?V f && are identically zero and the coefficient at ap I a& is equal Ai i $Ui.) 

We salve the system of Eqs. (1.3) by the method of small perturbations. We represent 
the dependent and independent variables in the following form : 

Q2, = LR*O + a%-&‘, Ej’ = a’j.$ (I. 7) 

where a is some smalf. parameter. CAk with k = 1, . , . , 5 denotes, respectively, 
U, v, w, p and p ‘and akand rj are constants with j I 1, 2, 3, 4. It is assumed 
that the following conditions: 

$2; = const, irk > 0, pa, p0 # 0 

are satisfied, and that the equality V” = 0 is only possibie for nonstationary flows. 
The zero approximation 52%” can correspond either to a uniform oncoming stream 
(supersonic flow past a slender profile) or to some point of the flow field (e. g. values 
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of parameters at the center of a nozzle). 
Let us substitute (1.7) into (1.3) and consider separately each expression containing 

a partial derivative with respect to any variable, with only the term of lower order with 
respect to e retained in it. As the result we obtain a system of linear equations in par- 
tial derivatives which superficially does not differ from (1.3). The difference is in that 
coefficients at derivatives &&’ t’ a&’ are replaced by their values calculated in the 
zero approximation and that each term is multiplied by e in some power (we denote it 
by /3jk), which formally determines its order of smallness. From (1.3) and (1. ‘7) we 
can obtain trjk =L ak -+ rj (Lf3) 

It is convenient to consider all quantities in the derived equations as dimensionless. 
We relate the dimension of length to some characteristic linear dimension, velocity to 
co, density to p”, pressure to p*P , etc. We omit primes at perturbed quantities, 

Let us assume that all terms in the derived equations are of the same order, which re- 
duces (1.3) to the form 

It follows from condition pjk = fi and (1.8) that all akand rj are expressed in terms 

of two parameters: uk = a and rj = p - CL These conditions conform to the con- 
ventional linear theory (the flow is defined by a linear system of equations). Terms of 
first order with respect to E (a = @ = 1) are considered in the classical linear theory 
with E determined by boundary conditions. 

Let us consider the matrix of coefficients at derivatives with respect to ?ji appearing 
in (1.9) (it is formally the same as (Lb), if zero ap~o~matio~s are substituted for its 
elements). Condition Ai = 0 is obviously determined by the choice of independent 
variables (quantities dij), as well as by the choice of the zero approximation (values 
of VO). Let us assume that in some region of the flow the following three conditions 
are satisfied : 

!WJi”+O, 2”. A;- 0, 3”. ast,/a&>an,/aEj (1 +=lJ (1.10) 

Conditions (1.10) are suffident for making the conventional linear theory inapplica- 
ble in the indicated region, Condition l9 implies that at least one element of each row 
of matrix (X,4) is nouxero, condition 3* shows that derivatives with respect to I& can be 
neglected in (1.9) as being considerably smaller than Et. Finally, in virtue of 2” a linear 
dependence exists between the left-hand sides of Eqs, (1,9), hence the corresponding sys- 
tem is either incomplete or inconsistent (in the absence of such dependence betweenits 
right-hand sides). 

2, Let us determine the flow regions which satisfy conditions (I, 10) for a satiny 
plane flow of perfect gas (L = 0). We consider the problem of flow past a slender pro- 
file,setting Es = 8 and Es = 11 . We select the system of coordinates so that v’=,O 
and U” = M,. As the nero approximatiou we select parameter values of the steady on- 
coming stream. We then have Us* = &Mea, U,” = A,,, 02% = Aa2 4 A222 
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and condition 2” becomes 
f&S? = J&s2 (Mm2 - 1) (2.1) 

If g is the characteristic variable, then for a supersonic flow (M, > 1) condition 
(2.1) is satisfied. Conditions 1’ and 2” are satisfied, for example, for A,, = A,, = 1, 
il,a,r==-=-,fm and A 32 - 0, h h w ic is equivalent to the following selection 

: q z y, E = E0 = z - y 1/M,” - 1. Thus the conventional linear 
theory is inapplicable in flow regions, where the derivatives with respect to E and 9 are 
of different order (condition 37, 

Let us formuiate a modified linear theory for these regions [4], Assuming that E Is 
the characteristic variable of the input system (1.3) (i. e. A, = 0 is satisfied exactly 
and not in the zero approximation), we find that derivatives with respect to E do not ap- 
pear in (1.6). From (1.9) and (1.6) we obtain 

(2.2) 

The solution for velocity is of the form u = F (E} with function F determined by 
boundary conditions, 

Setting E = F;o + y (Es, r) in accordance with the method of deformed coordi- 
nates 1151, for the determination of Y from the condition A8 =z: 0 we obtain the equa- 

where 3L is the adiabatic exponent of gas, The derived formulas determine the solution 
of the problem in the region in which the conventional linear theory is inapplicable, 

Let us apply another method. We assume that E = So is the characteristic variable 
of the linearized system of Eqs. (1.9). i. e. that Aa = 0 is satisfied only in the zero ap- 
proximation. Neglecting smalls of higher order and allowing for (2.2) we obtain A* = 
(x i- 1) MS,_& Using (2.2) and the formula for As, we reduce Eq. (1.6) to the nonlinear 
equation 

The solution of this equation is exactly the same as that derived by the method of de- 
formed coordinates. Thus in the case of a perfect gas the modified linear theory and the 
nonlinear theory of weakly perturbed flows yield the same results. 

For transonic flows (M, = 1) formula (2.1) implies that A,, = 0. Let us assume for 
simplicity that A,, = 0, As2 = A,, = 1, i. e. E = 5 and q = y, then Us0 = 1, Us0 = 
0, oa” = 1 and conditions lo and ‘2 are satisfied, If we assume that condition 3’ is also 
satisfied, then from the first two equations of (1.9) we obmin p = p = ---1l. To avoid 
a trivial solution it is necessary to set in the third equation of (1.9) & / at = - 6~ / 3% 
Carrying out on (1.6) the same transformations as in the previous case, we finally obtain 

au av au 
-=-9 -=(x+I)u$ a~ ax a~ 

This is the known equation of the theory of small perturbations in transonic flows. 
The analysis of (1.8) and of the order of the nonlinear term yields uL= as= ad== a, 

os = 3o / 2, rl =- fi-- a, rs= fi - a / 2. It is usually assumed that a = g L= 1. 



Nonlinear theory of weakly perturbed space flozr. 651 

Xn that case u = 0 (e), 37 = 0 (a*/*), x = 0 (1) and y = 0 (a’/~) *which are 
known estimates of the theory of weakly perturbed aansonic flows. 

For subsonic flows (M, < 1) condition (2.1) cannot be satisfied, hence the oonsi- 
dered regions of inapplicability of the linear theory do not exist in the case of subsonic 
speeds. The known problems of particular perturbations for equations of the elliptic kind 
[IS] depend on boundary conditions, 

3, bet us enumerate all regions of nonagon space flows for which conditions 
(X.16) are satisfied, and derive the nonlinear equations which define weakly perturbed 
flows in these regions. 

We assume that derivatives with respect to !$ are of the lowest order of smallness. 
Indices i and o will be omitted ( Ui” = U, oiO = w, Ei = ri, , etc.) whenever this 
does not lead to misunderstandings. We denote by fiI the lowest exponent of plk with 
k = 1, 2,. . . , 5 (fit=B). We consider Ai1 as constants and assume that condition 
2* is satisfied only in the zero approximation. Conditions V-3” can be written as 

1”. U # 0, 2”. fi2 = CfP> 3”, p < & (i+=Q (3.1) 

Five ~darnen~~~y different cases exist when conditions (3.1) are satisfied, 
First case, pik = p for any k, i, e. all derivatives with respect to E are oftbe 

same order. From (1.8) we directly obtain that ak = a, BJ’k = PI, r = fi - a 
and rj = f3j - a. After the substitution of (1.7) into system (I. 3) using the derived 
equalities and neglecting right-hand parts (see below), we obtain the following solution : 

P = P, UV = - A,p 6% 8 

From these formulas and condition 2’ we can obtain 

Ai = - UW’YP (3.3) 
where y is a constant (for a perfect gas y = x + 1). 

When applying the method of small perturbations to (1.6), we assume that the nonlinear 
term containing a derivative with respect to E is of the same order as derivatives with 
respect to L, hence Q j- p = pj. Thus the order of magnitude of parameters is in this 
case 

ok =CE, r=@--Q, rj=fl fistif (3*4) 

Equation (1.6) assumes the form 

Note that, if the equality a, i- #! = & is satisfied for a partfcular j there are no 
derivatives with respect to other variables under the summation sign in (3. S), 

It follows from (3.4) and (3.5) that L = 0 fsa+p), Because of thfs the right-band 
parts of (1.3) are not taken into account in the derivation of (3.2). 

Second case. pi a ;7= p (k + n) and Bj # 0 for at least one value of i. In 
suchacase allderivatives with respectto E, except dSt, / $5, are of the same order. It 
follows from (1.4) that system (1.3) has a trivial solution for n = 4, 5 (all derivatives 
with respect to 5 are zero), hence we assume n = 1, 2, 3. Below we consider, forsim- 
plicity, the case of n = 2, 

The reason for using condition 82 # 0 is to make it possible to equate the order of 
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the nonlinear term to that of the derivative dp / a&. To avoid a trivial solution it is 
necessary to set in the third of Eqs. (1.3) A is = 0. The final form of the system of 

equations is 

p=p= +=__$, Uav= 

22 24 x 
-2 Ajs$ (3.6) 

jzi 1 

Ais = 0, -22 Bja$-ti2rp$=Id*S 
j#i 3 

The order of terms is 

ok=U, Un=2U, r=p-Ua, Tl=@, rj>p Gzi91) (3.7) 

If B, = 0 (I # i, j), the corresponding terms simply vanish from the last of Eqs. 

(3.6). 
Third case. pik =p(k#n) and B, = f 0 or at least one value of 1. For 

B, = 0 it is possible to equate the order of the nonlinear term to that of highest deri- 

vative with respect to EL. For n = 2 av / a& issuchaderivative.Thus p + a = 
o, $- TV. Furthermore, the condition of nontriviality of solution of the third of Eqs. (1.3) 
implies that a, + p - a = a + rl. Taking into account (1.8), we finally obtain 

‘k = u> ‘ll = 3 a I 2> r = fi - u, Tl = p - U / 2, Tj > fi for (3.8) 

Bj # 0, rj > f3 - u / 2 for Bf = 0 (i $: i, 1) 

The fundamental equations that define the flow in this region are 

p=p=--$=--&, Ais=@ U~=_~A,,- 
12 i4 aE; l#i 

- 

Subscripts 1 and j relate to variables El for which B1 = 0, and to those for which 

Bj # 0 .respectively. Note that all coefficients B can vanish only in the case of a 
stationary transonic flow. In the case of a nonstationary flow this condition would imply 
that the Jacobian of transformation (1.2) is zero. 

Fourth case. pik = p (Ic # n, s) and Bj ;it 0 for at least one value of i. 
All derivatives with respect to E, except two, are of the same order. A nontrivial solu- 
tion exists only for 12, s = 1, 2, 3. Setting n = 2 and s = 3, we find from the third 

and fourth of Eqs. (1.3) that Ai, = A i, = 0. Applying the same reasoning as in the 
previous case, we obtain the system of equations 

If B, = 0 (1 # i, 17, the related term simply vanishes in the last of Eqs. (3.10). 
In this case the order of terms is as follows: 

uk = a (k # n, s), a, = a, = 2~2, r = b - a, rj > rl = p (3.11) 



It should be noted that at first glance L, and L, should have been retained in the 
right-hand parts of the third and fourth of Eqs. (3.10). However, a closer examination 
of relaxation processes shows that they can be neglected. 

Fifth case, fiSk = @ (k + n, S) and B1 = 0. We ascribe subscript I to those 
variables for which BE = 0 and subscript i to those tar which Bj # 0. A~~ing 
as in the previous case that the crder of the nonlinear term is the same as that of the 
term containing 6% / 85, or &D / 6&, (with n = 2 and s = 3) we obtain 

Ai, = Ai = 0, --2Xj~+U~a(A,,v+A,*~)- . j IFi 4 

In this case all remarks about B 
order of parameters is as follows: 

ok = a, a, = i& = 3 a ! 

made in the analysis of the third case are valid. The 

2, r = fi - CZ, Fl = p - CX / 2, Fj = fl (3.13) 

Further increase of the number of derivatives of higher orfer with respect to E yields 
trivial equations. 

It follows from the above calculations that in all cases 

L.S=UL,“--lo+ULaC=O(ep+P) (3.14) 

4, Let us consider a homogeneous or heterogeneous medium in which h’ unsteady 
processes can take place (oscillatory relaxation, chemical reactious, mismatch of velo- 
cities and temperatures of solid or liquid particles and gas, interphase mass transfer, etc& 

We denote the relaxation parameter (completeness of an unsteady process) by Qj and 
the affinity of such process by Qj = qjs - qj (qje is the equilibrium value of the re- 
laxation parameter). We omit the general expression for L, and vesent it directly in 
the linearized form. For this we segregate all relaxation processes into several kinds. 
We assume that for small variation of flow parameters k relaxatfon processes weakly 
deviate from the equilibrium state (near-equilibrium flow Qko = O), 1 + m ~IMBSS 
proceed very slowly (near-frozen state, Qt = 0, Qmo # 0), and n relaxation processes 
may pass from the frozen to the equilibrium state (Q%* = 0). The expression for L. S 
can be presented in the following general form : 

L.S=UQZjHI, fg$+uz pJ a,$ (k + I + m + n = N) (4.1) 
K j=l ,m,n 

Application of the method of small perturbations to kinetic equations yields [9. 111 

u 2 = Q&-l f QjAYl 

where A, are relaxation times, 

(4.2) 

In what follows equilibrium values of relaxation parameters will be presented in the 
form qrs = E~P (4.3) 
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Equations (4.1) and (4.2) wilt be used fn flow regions in which the conventional lin- 
ear theory is inapplicable (i. e. in regions corresponding to the five considered cases, 
hence for noneq~librium processes dependent on energy exchange Eq, (4.3) follows from 
Qe = Qe (P, p), since for all five cases p = p. If the nonequllibrium processes de- 
pend on the exchange of momentum, then qe = u, v , or w [ 161) and the velocity 
components are either expressed in terms of p, or do not appear in L.S (in consequence 
Of Ai, = 0 or Ai, = 0). 

With the use of (4.3) the kinetic equations (4.2) can be presented in the following 
two alternative forms : 

aQ,=E’ au Qk 
al ky-visk7 

u i aqi __ 
i j% - Qj” + .Ejp - qj (j -= l,nz,n) (4.4) 

Knowing the order of parameters E = 0 (&*), p = 0 (P)and L-S = 0 (p+P), 
which are the same for all five of the considered regions of linear theory inapplicability, 
we can estimate the order of parameters which define relaxation processes. let us assume 
that H = 0 (&*), then from (4.1) we directly obtain Qr, 1=: O(EW-~), and 4j = 
O(eza-s) (j = 1, n, n). 

Assuming that Qlll” -_ 0 (1) and retaining only terms of lower order, we obtain 

Q Qk = &&cU ~1 qk = I!$$, A, = 0 ($a-P-s) (4.5) 

u aq, ?@- = E,h;‘p, Ql = E,p, A, = O(@f 

%n - = Q;A$ 
at 

h, G O@-P-4 

UA$L Enp - qnr s L= a, h, = o (&a-@) 

For generality, estimates for Ai are shown in (4.5). however, if A, = 0 (I), then 
s = 2a - p, s=p,s=fJ+ a, s = a = @ ,respectively, for each of the four 
kinds of relaxation processes. We introduce the notation 

P = us 2 A~~~~~, ‘x = - 2 A;%&, 6 ^- - 2 ~E~~~ 
k 1 7% 

and substitute the first three formulas of (4.5) into (4, I), then 

(4.6) 

Using formula Qn = &p -f Qn and the first of Eqs, (4.4)‘ we eliminate qn from 
(4,6). As the result we obtain 

(- l)na,K -t rgl -$ I(-- I)“-Qz,K +- b,p] = 0 (4.7) 

where a, are coeffidents of the ~lynomial P (CX) = (z - U-ii\;‘> . . . (z - U-‘&i), 
and 6, is obtained in the course of derivation of Eq. (4.7). 

Note that in constructing the nonlinear theory of weakly perturbed flows in conformity 
with formula (4.1) for La S it is necessary to use the equilibrium speed of sound for re- 
laxation processes, and the frozen for all others, The condition for absence of derivatives 
of S2j in L is satisfied in this Case. 



Nonlinear theory of weakly perturbed space flow 655 

6, using (4,6), (4.7), (3.5), (3.6). (3.9), (3.10) or (3.12) it is possible to derive vari- 
ous nonlinear equations which define the flow in regions where the conventional linear 
theory is inapplicable. 

Let us consider, for instance, a nonstationary supersonic space flow with relaxation pro- 
cesses of the first three kinds. Conditions (1.10) are satisfied for A,, = A,, = A,, = 
A,, = 1, A,, = - 2M,, A,, = - B, (u’ -1~ M,, v” = w0 = 0 B 2 = 
&&,2 - 1) , and consequently u; = 1, U, = - M, and Ua = U, ‘= t. This 
corresponds to variables & = t, Es = E = - 21M,t + J: - &&, $3 = Y and 
& = z. Equations 

define the flow in the region in which in the second case the conventional linear theory 
is inapplicable. The order of magnitude of parameters is determined by formulas (3.7). 

Let us consider the nonstationarv transonic space fiow. Conditions (1.10) are satisfied, 
if A,, = A,, = Ass = da4 = M, = 1, and the remaining Aij are set equal to 
zero.WethenhaveU,=U,=j,lj-,==U,=O, B,=-_landB,=B3= 
B, = 0. For relaxation processes close to either the frozen or equilibrium state from 
(3.12) and (4.6) we obtain 

These equations were analyzed by Ryzhov [I71 for a perfect gas. 
Note that in this case it is not necessary to assume in the zero approximation M,=1. 

Thus, for example, it is possible to assume U2 - @a = 0 (a”) and, using the velocity 
potential cp, for a single relaxation process of the fourth kind from (3.12) with allowance 
for (4.7) to obtain 

The author thanks A. N, Kraiko for valuable remarks during discussion of this problem. 
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A method of derivation of the Korteweg - de Vries - Burgers (KdVB) equation for 
media with dispersion and dissociation, whose behavior is defined by equations 
of a fairly general form, is presented. The method is used for obtaining KdVB 
equations for collision plasma with Hall dispersion and the Korteweg - de Vries 
(KdV) equation for waves propagating in hot collisionfree plasma across a mag- 
netic field. 

Considerable attention was recently devoted to the investigation of the Korte- 
weg - de Vries equation which provides a good definition of weakly nonlinear 
waves in the presence of dispersion in various media waves on shallow water, 
ionization sound in plasma, etc.). Since this equation is at present well known, 
its derivation is important for the investigation of wave motion in any medium. 
It was stated [l] on the basis of investigation of a number of examples that the 


